

Date Planned ://	Daily Tutorial Sheet-3	Expected Duration : 90 Min
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :

31. Benzoyl chloride is prepared from benzoic acid by :

(2000)

(**A**) Cl₂, hv

(**B**) SO₂Cl₂

(C) SOCl₂

- (D) Cl_2 , H_2O
- 32. Identify X and Y in the following synthetic scheme and write their structures. Explain the formation of labeled formaldehyde (H₂CO) as one of the products when compound (Z) is treated with HBr and subsequently ozonolysed. Mark the C* carbon in the entire scheme. (2001)

$$\operatorname{Ba} \overset{*}{\operatorname{C}} \operatorname{O}_3 + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow X$$

$$(C^* = C^{14})$$

$$\begin{array}{c} \text{CH}_2 = \text{CH} - \text{Br} \xrightarrow{\quad \text{(i) Mg/ether} \\ \quad \text{(ii) X} \\ \quad \text{(iii) H}_3\text{O}^+ \end{array}} \text{Y} \xrightarrow{\quad \text{LiAlH}_4 \\ \end{array}$$

- **33.** (±) 2-phenylpropanoic acid on treatment with (+)-2-butanol gives (A) and (B). Deduce their structures and also establish stereochemical relation between them. (2003)
- **34.** An enantiomerically pure acid is treated with racemic mixture of an alcohol having one chiral carbon. The ester formed will be: (2003)
 - (A) Optically active mixture
- **(B)** pure enantiomer

(C) meso compound

- **(D)** racemic mixture
- **35.** Benzamide on treatment with $POCl_3$ gives:

(2004)

(A) aniline

(B) benzonitrile

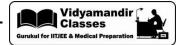
(C) chlorobenzene

(D) benzyl amine

36. CH₂Cl

$$\frac{\text{KCN}}{\text{DMF}} \bullet \text{(A)} \xrightarrow{1. \text{ C}_2\text{H}_5\text{ONa/EtOH}} \bullet \text{(B)} \xrightarrow{\text{H}_3\text{O}^+/\Delta} \bullet \text{(C)} \xrightarrow{\text{SOCl}_2} \bullet \text{(D)}$$

(2004)


Identify A to D.

37. Which of the following reactants on reaction with conc. NaOH followed by acidification gives the following lactone as the only product? **(2006)**

(B)

(C)

(A)

PARAGRAPH FOR QUESTIONS 38-40

(2006)

 RCONH_2 is converted into RNH_2 by means of Hofmann's bromamide degradation.

$$CI \longrightarrow \bigcap_{NH_2} O \longrightarrow CI \longrightarrow \bigcap_{NHBr} O \longrightarrow \bigcap_{(iii)} O \longrightarrow \bigcap_{(iii)} O \longrightarrow \bigcap_{(iv)} O \longrightarrow \bigcap_{(iv)} O \longrightarrow O \longrightarrow O$$

In this reaction, PhCONHBr is formed from which this reaction has derived its name. Electron donating group at phenyl activates the reaction. Hofmann's degradation reaction is an intramolecular reaction.

- **38.** How can the conversion of (i) to (ii) be brought about?
 - (A) KBr

(B) $KBr + CH_3ONa$

(C) KBr + KOH

- **(D)** $Br_2 + KOH$
- **39.** Which is the rate determining step in Hofmann's bromamide degradation?
 - (A) Formation of (i)

(B) Formation of (ii)

(C) Formation of (iii)

- **(D)** Formation of (iv)
- **40.** What are the constituent amines formed when the mixture of (1) and (2) undergoes Hofmann's bromamide degradation?

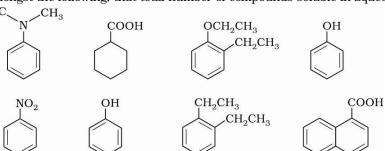
$$\begin{array}{c|c} & & & \\ \hline & & \\ D & (I) & (II) \\ \end{array}$$

(A)
$$NH_2$$
, NH_2 , NH_2 , NH_2 , NH_2 , NH_2

(B)
$$NH_2$$
, NH_2 (C) NH_2 ,

(D)
$$NH_2$$

- **41. Statement-I:** p-hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid. **(2007) Statement-II:** o-hydroxybenzoic acid has intramolecular hydrogen bonding.
 - (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True

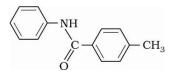

42. Among the following compounds, the most acidic is

(2011)

(A) *p*-nitrophenol

- **(B)** *p*-hydroxybenzoic acid
- (C) o-hydroxybenzoic acid
- **(D)** *p*-toluic acid
- **43.** Amongst the following, that total number of compounds soluble in aqueous NaOH is

(2011)



44. In the reaction H_3C $(1) NaOH/Br_2$ T the structure of the NH_2 (2) (2)

(2011)

Product T is

(B)

(C) H_3C NH (D)

- H₃C NH C
- **45.** The carboxyl functional group (-COOH) is present in :

(2012)

- (A) picric acid
- (B) barbituric acid (C)
- ascorbic acid
- (D) aspirin